Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.11.448032

ABSTRACT

The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The DNA-only vaccine regimens were compared to a regimen that included co- immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques. Author summaryAnti-Spike neutralizing antibodies provide strong protection against SARS-CoV-2 infection in animal models, and correlate with protection in humans, supporting the notion that induction of strong humoral immunity is key to protection. We show induction of robust antibody and T cell responses by different Spike DNA-based vaccine regimens able to effectively mediate protection and to control SARS-CoV-2 infection in the rhesus macaque model. This study provides the opportunity to compare vaccines able to induce different humoral and cellular immune responses in an effort to develop durable immunity against the SARS-CoV-2. A vaccine regimen comprising simultaneous co-immunization of DNA and Protein at the same anatomical site showed best neutralizing abilities and was more effective than DNA alone in inducing protective immune responses and controlling SARS-CoV-2 infection. Thus, an expansion of the DNA vaccine regimen to include co-immunization with Spike protein may be of advantage also for SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL